Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Observations of planetary material polluting the atmospheres of white dwarfs are an important probe of the bulk composition of exoplanetary material. Medium- and high-resolution optical and ultraviolet spectroscopy of seven white dwarfs with known circumstellar dust and gas emission are presented. Detections or meaningful upper limits for photospheric absorption lines are measured for: C, O, Na, S, P, Mg, Al, Si, Ca, Ti, Cr, Fe, and Ni. For 16 white dwarfs with known observable gaseous emission discs (and measured photospheric abundances), there is no evidence that their accretion rates differ, on average, from those without detectable gaseous emission. This suggests that, typically, accretion is not enhanced by gas drag. At the effective temperature range of the white dwarfs in this sample (16 000–25 000 K) the abundance ratios of elements are more consistent than absolute abundances when comparing abundances derived from spectroscopic white dwarf parameters versus photometric white dwarf parameters. Crucially, this highlights that the uncertainties on white dwarf parameters do not prevent white dwarfs from being utilized to study planetary composition. The abundances of oxygen and silicon for the three hydrogen-dominated white dwarfs in the sample with both optical and ultraviolet spectra differ by 0.62 dex depending on if they are derived from the optical or ultraviolet spectra. This optical/ultraviolet discrepancy may be related to differences in the atmospheric depth of line formation; further investigations into the white dwarf atmospheric modelling are needed to understand this discrepancy.more » « less
-
ABSTRACT We present a comprehensive overview of a volume-complete sample of white dwarfs located within 40 pc of the Sun, a significant proportion of which were detected in Gaia Data Release 3 (DR3). Our DR3 sample contains 1076 spectroscopically confirmed white dwarfs, with just five candidates within the volume remaining unconfirmed (> 99 per cent spectroscopic completeness). Additionally, 28 white dwarfs were not in our initial selection from Gaia DR3, most of which are in unresolved binaries. We use Gaia DR3 photometry and astrometry to determine a uniform set of white dwarf parameters, including mass, effective temperature, and cooling age. We assess the demographics of the 40 pc sample, specifically magnetic fields, binarity, space density, and mass distributions.more » « less
-
ABSTRACT Spatially resolved images of debris discs are necessary to determine disc morphological properties and the scattering phase function (SPF) thatantifies the brightness of scattered light as a function of phase angle. Current high-contrast imaging instruments have successfully resolved several dozens of debris discs around other stars, but few studies have investigated trends in the scattered-light, resolved population of debris discs in a uniform and consistent manner. We have combined Karhunen-Loeve Image Projection (KLIP) with radiative-transfer disc forward modelling in order to obtain the highest-quality image reductions and constrain disc morphological properties of eight debris discs imaged by the Gemini Planet Imager at H-band with a consistent and uniformly applied approach. In describing the scattering properties of our models, we assume a common SPF informed from solar system dust scattering measurements and apply it to all systems. We identify a diverse range of dust density properties among the sample, including critical radius, radial width, and vertical width. We also identify radially narrow and vertically extended discs that may have resulted from substellar companion perturbations, along with a tentative positive trend in disc eccentricity with relative disc width. We also find that using a common SPF can achieve reasonable model fits for discs that are axisymmetric and asymmetric when fitting models to each side of the disc independently, suggesting that scattering behaviour from debris discs may be similar to Solar system dust.more » « less
-
Abstract We present near-infrared Large Binocular Telescope LMIRCam imagery of the disk around the Herbig Ae/Be star AB Aurigae. A comparison of the surface brightness at K s (2.16 μ m), H 2 O narrowband (3.08 μ m), and L ′ (3.7 μ m) allows us to probe the presence of icy grains in this (pre)transitional disk environment. By applying reference differential imaging point-spread function subtraction, we detect the disk at high signal-to-noise ratios in all three bands. We find strong morphological differences between the bands, including asymmetries consistent with the observed spiral arms within 100 au in L ′ . An apparent deficit of scattered light at 3.08 μ m relative to the bracketing wavelengths ( K s and L ′ ) is evocative of ice absorption at the disk surface layer. However, the Δ( K s − H 2 O) color is consistent with grains with little to no ice (0%–5% by mass). The Δ ( H 2 O − L ′ ) color, conversely, suggests grains with a much higher ice mass fraction (∼0.68), and the two colors cannot be reconciled under a single grain population model. Additionally, we find that the extremely red Δ ( K s − L ′ ) disk color cannot be reproduced under conventional scattered light modeling with any combination of grain parameters or reasonable local extinction values. We hypothesize that the scattering surfaces at the three wavelengths are not colocated, and that the optical depth effects in each wavelength result from probing the grain population at different disk surface depths. The morphological similarity between K s and H 2 O suggests that their scattering surfaces are near one another, lending credence to the Δ( K s − H 2 O) disk color constraint of <5% ice mass fraction for the outermost scattering disk layer.more » « less
-
Abstract We present a spectroscopic survey of 248 white dwarf candidates within 40 pc of the Sun; of these 244 are in the Southern hemisphere. Observations were performed mostly with the Very Large Telescope (X-Shooter) and Southern Astrophysical Research Telescope. Almost all candidates were selected from Gaia Data Release 3 (DR3). We find a total of 246 confirmed white dwarfs, 209 of which had no previously published spectra, and two main-sequence star contaminants. Of these, 100 white dwarfs display hydrogen Balmer lines, 69 have featureless spectra, and two show only neutral helium lines. Additionally, 14 white dwarfs display traces of carbon, while 37 have traces of other elements that are heavier than helium. We observe 35 magnetic white dwarfs through the detection of Zeeman splitting of their hydrogen Balmer or metal spectral lines. High spectroscopic completeness (> 97 per cent) has now been reached, such that we have 1058 confirmed Gaia DR3 white dwarfs out of 1083 candidates within 40 pc of the Sun at all declinations.more » « less
An official website of the United States government
